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Figure 1 (Color online) Schematic view of the CME initiation process
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Figure 2 (Color online) Magnetic switchbacks in the solar wind. (a) Illustration of magnetic switchbacks. Credit: NASA’s Goddard Space Flight
Center/Conceptual Image Lab/Adriana Manrique Gutierrez. (b) The relationship between switchbacks and solar jets near chromospheric network
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Figure 3 Schematic of the space hurricane and its formation mechanism’”. The magenta cyclone-shape auroral spot with brown thick arrows of
circular ionospheric flows represents the space hurricane. Dark blue lines are Earth’s magnetic field lines, with electron precipitation and upward field-

aligned currents (FACs)
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Figure 4 (Color online) Quiet time variability of the equatorial ionization anomaly (EIA)?. (a—d) GOLD observations from four sequential nights
during geomagnetically quiet conditions on 20-23 November 2018. Variability in the EIA extends beyond plasma depletions within the crests
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Figure 6 (Color online) A schematic of the pickup ion process occurring during the observed transient exosphere event. Photons (/v) ionize the

planetary atoms originating from a plume caused by a meteoroid impact event. These ions are then picked up by the solar wind!
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Heliophysics, a highly active and foundational frontier of contemporary natural science, stands as a critical interdisciplinary
field encompassing solar physics, space physics, space weather and plasma physics. It is of paramount importance for
understanding the physical processes of the Sun-Earth system and the solar system as a whole, as well as for ensuring the
security of human high-technology activities in space. Since the successful launch of the first artificial satellite in 1957
ushered in a new era of space exploration, humanity has deployed hundreds of specialized spacecraft to investigate the
myriad phenomena within our heliosphere. The synergistic use of remote sensing and in-situ measurements, integrated with
extensive ground-based observations and sophisticated numerical models, has yielded numerous breakthrough discoveries.
These advancements have profoundly enhanced our understanding of the Sun’s influence on the solar system and the
complex space environment surrounding Earth. This paper presents a comprehensive review of the current research status
and future development trends in heliophysics, both domestically and within China. It synthesizes significant scientific
achievements and cutting-edge advancements in recent years across four key domains: (1) the Sun and the heliosphere; (2)
Earth’s magnetosphere; (3) the ionosphere and the middle-upper atmosphere; and (4) the space environments of the Moon
and other planets. Our analysis indicates that the international research paradigm is progressively expanding from a focused
study of the “Sun-Earth system connection” to a holistic exploration of the “Sun-Solar System connection”. Concurrently,
technological advancements in wide-field imaging and constellation-based missions are significantly enhancing our
observational capabilities for both macroscopic and meso- to micro-scale three-dimensional structures. Furthermore,
comparative planetology and the study of planetary habitability are gaining increasing prominence. Domestically, China’s
heliophysics research has established a considerable ground-based monitoring network, is accelerating the construction of
its space-based detection systems, and is continuously strengthening its academic foundations, leading to a steady
emergence of original scientific outcomes. Looking toward the future, and aligned with the strategic deployment outlined in
the recently released “National Space Science Mid- and Long- Term Development Plan (2024-2050)”, this paper provides
an in-depth discussion of ten critical scientific questions that China aims to address. These questions include: (1) the
characteristics of magnetic activity in the solar polar regions and the formation mechanism of the solar magnetic cycle; (2)
the cross-scale processes and mechanisms governing solar wind-magnetosphere interactions; (3) the processes and
mechanisms of the solar wind’s interaction with the interstellar medium; (4) the three-dimensional propagation
characteristics of solar wind disturbances and the prediction of the southward magnetic field; (5) the influence of inner
magnetospheric wave-particle interactions on the three-dimensional structure and evolution of radiation belts; (6) the
coupling processes between the magnetosphere, ionosphere, and thermosphere, and the dynamics of polar particles; (7) the
causes and variability of multi-scale disturbance structures in the ionosphere/thermosphere; (8) the coupling processes and
mechanisms between Earth’s geodynamic activity, atmosphere, and ionosphere; (9) the space weather environment and the
mechanisms of matter and energy circulation in giant planet systems; and (10) the influence and mechanisms of space
weather on planetary habitability. This paper aims to provide a comprehensive scientific reference for China’s future
deployment of research initiatives and strategic planning in heliophysics.
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